The ultimate seismic system
My name is Yiannis Lymperis. This video shows the mechanism of the seismic system and a seismic design method.
It presents also experiments with and without the seismic patent, side by side on screen to compare the seismic protection offered by the invention.
The utility of the invention has been shown experimentally.
Patent Idea
We have placed on a table two columns, one column screwed on the table, and the other simply put on the table.
If one shifts the table, the unbolted column will be overthrown.
The bolted column withstands the lateral loading.
We do exactly the same in every column of a building to withstand more lateral earthquake loading. That is done, by simply screwing it to the ground.
This pretension between the roof of the structure and the soil has been globally disclosed for the first time.
The horizontal earthquake load generates oscillation, and the result is that the upper plates shift more than the lower ones, the columns lose their eccentricity exerting a lifting force on the bases, as well as creating a twisting action in all of the nodes of the structure.
The ideal situation would be if one could construct a building framework where, during an earthquake, all the plates would shift by the same amplitude as the ground without differing phases.
The research I have carried out resulted in just this. The method of the invention eliminates all these problems of deformation in the building construction applying pretension, through the mechanism, between the roof of the structure and the soil.
1) Comparing with existing anti seismic systems, the invention increases the strength of the structure to an earthquake over 100% and reduces the cost of protection more than 50%.
2) I believe that with this method, prefabricated houses can be placed in towns constructing several floors. Manufacturers and all of us will profit from this change because they are industrially produced 30-50% cheaper.
3) The Patent mechanism can be applied to all building projects being under construction, however, it may also be placed in many existing structures, ensuring seismic protection.
Patent mechanism and method offer protection to lightweight constructions against tornadoes.
It may also be used as an anchor for the support of ground slopes on highways.
It ensures a strong foundation in soft ground.
And all this in a patent
There is no absolute seismic design.
The invention provides the absolute seismic design.
Its uniqueness makes it very marketable.
Our scientific team consists of:
A) Professor Panagiotis Karidis, Seismic Technologist-Engineer and Founder of the seismic base at The National Technical University.
B) Nikos Markatos, Chemical Engineer and former Rector of The National Technical University.
All of us have over 40 years experience, and this is the guarantee of the investment that we ask you to undertake.
The patent is the ultimate seismic system that will change the world's seismic design method of construction .
We have invented a method and mechanism that joins the roof ( roof ) construction with the ground .
This pretension between the roof of the structure and the soil becomes world's first time , and stops deformation generated in the building during the earthquake , so ensure absolute durability.
Comparing with present construction , the invention increases the strength of the structure to an earthquake over 300 % and reduces the cost of construction of over 30 %
Video anti earthquake system, Αντισεισμικά συστήματα
Apply placement in all building projects are under construction , but and in many existing structures , ensuring absolute seismic protection.
For example, houses, skyscrapers , dams , windmills , bridges , roads.
Even protects and lightweight construction of tornadoes .
Use also as anchor for the support of ground slope on highways .
Brief description of the invention
The principal object of the hydraulic tie rod for construction projects of the present invention as well as of the method for constructing building structures utilizing the hydraulic tie rod of the present invention is to minimise the aforesaid problems associated with the safety of construction structures in the event of natural phenomena such as earthquakes, hurricanes and very high lateral winds. According to the present invention, this can be achieved by a continuous pre-stressing (pulling) of both the building structure towards the ground and of the ground towards the structure, making these two parts one body like a sandwich. Said pre-stressing is applied by means of the mechanism of the hydraulic tie rod for construction projects. Said mechanism comprises a steel cable crossing freely in the centre the structure's vertical support elements and also the length of a drilling beneath them. Said steel cable's lower end is tied to an anchor-type mechanism that is embedded into the walls of the drilling to prevent it from being uplifted. Said steel cable's top end is tied to a hydraulic pulling mechanism, exerting a continuous uplifting force. The pulling force applied to the steel cable by means of the hydraulic mechanism and the reaction to such pulling from the fixed anchor at the other end of it generate the desired compression in the construction project.
The skeleton of a building consists of the columns (vertical parts) and the girders and slabs (horizontal parts). The girders and slabs are joined at the nodes.
Under normal conditions, all loading is vertical. When an earthquake occurs, additional horizontal loading is placed on the skeleton.
The resultant effect of horizontal plus vertical loading puts strain on the nodes. It alters their angle from 90 degrees, creating at times acute and at other times obtuse angles.
The vertical static loads equilibrate with the reaction of the ground.
The horizontal earthquake load exerts a lifting effect on the bases of the columns. In addition, due to the elasticity of the main body of the columns, the earthquake acts by shifting the heights of each plate by a different amplitude and a different phase. That is, the upper plates shift more than the lower ones. The modal shifts of the skeleton are many, so many that the differing, shifting directions of the earthquake deform and destroy the skeleton.
The ideal situation would be if we could construct a building skeleton where, during an earthquake all the plates would shift by the same amplitude as the ground without differing phases. In this way the shape will be preserved and we would not have any deformation of the frame, hence no damage.
The research I have carried out has resulted in the creation of an anti- seismic design for buildings which achieves exactly this result.
I have succeeded in doing this by constructing large elongated ridged columns shaped -, +, Γ or T to which a pulling force is applied from the roof and from the ground, applying bilateral pressure to the entire column. This force acts to prevent bilateral shifting of the columns and curvature at their bases so preventing the deformation which occurs throughout the whole structure during an earthquake.
In an earthquake, the columns lose their eccentricity and their bases are lifted, creating twisting in all of the nodes of the structure. There is a limit to the eccentricity, that is, there is a limit to the surface area of the base which is lifted by the rollover moment.
To minimise the twisting of the bases, we place strong foot girders in the columns.
In the large longitudinal columns (walls), due to the large moments which occur during an earthquake, it is practically impossible to prevent rotation with the classical way of construction of the foot girders.
The following result occurs with this lifting of the base in combination with the elasticity. When one column of the frame lifts one end of the beam upwards, at the same time the other column at its other end moves violently downwards.
This stresses the beam and has the tendency to twist it in different directions at the two ends, deforming its body in an S shape.The same deformation occurs with the columns also, due to the twisting of the nodes and the differential phase shift of vertical plates.
In order to prevent the lifting of the base, we clamp the base of the structure to the ground using the patented mechanism.
However, if we want to prevent the lifting of the whole columnar structure which stems from the lifting of its base as well as from the elasticity of its main body, then the best point for enforcing an opposing, balancing force is the roof. This opposing tendency on the roof must come from an external source and not applied from within the structure. This external source is the ground underneath the base. From here the external force is applied.
Underneath the base of the structure, we drill a hole into the ground and clamp it with the patented anchor. With the aid of a cable which passes freely through a pipe in the column, we transfer this force which we obtained from the ground up to the roof.
At this point in the roof, we insert a stop with a screw to prevent the raising of the roof of the longitudinal columns which happens during an earthquake and deforms all the plates.
In this way, we control the oscillation of whole structure. That is, the deformity which the structural failure causes. With this method, we do not see changes in the form of the structure, because it maintains the same shape it had prior to and during the earthquake.
The reaction of the mechanism to the raising of the roof of the longitudinal column and the opposing reaction of the at the bottom part of the base, divert the lateral load of the earthquake into the strong vertical section.
With this diversion of the lateral load of the earthquake to the vertical columns, the twisting of the nodes is abolished because the lateral loadings of the earthquake are 100% borne along the length of the columns, so it is impossible for them to twist in their main sections.
In the experiments I have carried out in actual scale earthquake acceleration of 1.77g and amplitude over 0.11 in a two story building model to scale 1:7.14, the difference in the model with and without the patented mechanism can clearly be seen.