In set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They are named after the symbol used to denote them, the Hebrew letter aleph (\aleph).
The cardinality of the natural numbers is \aleph_0 (read aleph-naught; also aleph-null or aleph-zero), the next larger cardinality is aleph-one \aleph_1, then \aleph_2 and so on. Continuing in this manner, it is possible to define a cardinal number \aleph_\alpha for every ordinal number α, as described below.
http://en.wikipedia.org/wiki/Aleph_numberThe cardinality of the natural numbers is \aleph_0 (read aleph-naught; also aleph-null or aleph-zero), the next larger cardinality is aleph-one \aleph_1, then \aleph_2 and so on. Continuing in this manner, it is possible to define a cardinal number \aleph_\alpha for every ordinal number α, as described below.
Χίλια συγγνώμη που βάζω τη Βίκι έτσι, αλλά όπως υποψιάζεστε, δεν καταλαβαίνω τι διαβάζω. Βρίσκω διάφορα άλεφ στο διαδίκτυο, αλλά δεν είμαι σίγουρη.
Υπάρχει μάλιστα και άλεφ άλφα, που αντί για μηδέν, όπως στο παρακάτω σχέδιο, έχει άλφα ελληνικό.
Τι λέτε;
Ευχαριστώ εκ των προτέρων, κομ τουζούρ :)